

Hybrid Chemical-Electric Trajectories for a Mars Sample Return Mission

AAS 19-345 29th AAS/AIAA Space Flight Mechanics Meeting, January 13th, 2019 Ka'anapali, HI

Presented by:

Frank Laipert
Mission Design Engineer
NASA Jet Propulsion Laboratory

Authors:

Frank Laipert, Austin Nicholas, Zubin Olikara, Ryan Woolley, and Rob Lock

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Introduction

Hybrid Chemical-SEP propulsion is well suited to an MSR Earth Return Orbiter.

Chemical Propulsion

- Provides timely Delta V.
- Useful to meet challenging timeline constraints.
- Ex: coordinate with surface mission, save time reaching LMO.

Electric Propulsion

- Provides bulk Delta V.
- Useful to handle high Delta V requirements.
- Ex: Departing LMO and returning to Earth.

ERO has both of these

Introduction

Using SEP means spacecraft and trajectory are coupled.

Trajectory Database

- A database of low thrust trajectories serves as the trajectory module in the optimization.
- Alternative would be optimizer-in-the-loop.
- Database allows system optimizer to run faster, and provides confidence in solution since we have mapped out entire trajectory design space.

Outbound Grid

Thrusters: RIT 2X, T6, PPS, Hermes (ARM)

Variable	Lower Bound	Upper Bound	Step Size	# of pts
Power at 1 AU	11 kW	120 kW	Variable	10 per thruster config
Launch Date	March 5, 2025	June 12, 2029	20 days	79
Helio TOF	100 days	1600 days	20 days	76
Arrival Velocity	0 km/s	3 km/s	0.2 km/s	16

~30 million total trajectories

Inbound Grid

Thrusters: RIT 2X, T6, PPS, Hermes (ARM)

Variable	Lower Bound	Upper Bound	Step Size	# of pts
Power at 1 AU	11 kW	120 kW	Variable	9-11 per thruster config
Launch Date	April 24, 2027	Sep. 19, 2033	20 days	118
Helio TOF	100 days	1600 days	20 days	76
Arrival Velocity	1.5 km/s	6.8 km/s	-	3
Earth Arrival Mass	750 kg	3500 kg	variable	5-10 per thruster config

~70 million total trajectories

Optimizing Outbound Hybrid Trajectory

Outputs

Searching for Hybrid Transfer

Level 1: E → M, 2026, Ar64 → LMO

Level 2: T6×3, 30 kW

Level 3: Launch Sep. 16, 2026

→ LMO Jan. 29, 2028 (500 days)

Level 4: Heliocentric TOF, Mars V_∞ (search all combinations for max LMO mass)

Selecting Hybrid Transfer

Creating Hybrid Bacon Plots

Level 1: E → M, 2026, Ar64 → LMO

Level 2: T6×3, 30 kW

Level 3: Vary launch date

→ <u>vary</u> LMO arrival date

Mars → Earth Hybrid Bacon Plots Jet Propulsion Laboratory California Institute of Technology

Outbound Example

Outbound Example

Inbound Example

Conclusion

- Hybrid Chemical-SEP propulsion is well suited to the needs of an MSR Earth Return Orbiter.
- We mapped out the hybrid trajectory design space in a database.
- The trajectory database was used in conjunction with a system optimization tool to produce a matched spacecraft-trajectory pair.

Example Grid Space

Using cluster to compute trajectories

- Need 128 million trajectories.
- Using MALTO on parallel cluster cores, can get about 100 traps (trajectories per second).
- ~2 weeks to get through all the cases.
- Had to go through several iterations: about 400 million total trajectories and several decades of CPU time.